

Computation of singular currents at rational surfaces in non-axisymmetric MHD equilibria

Joaquim Loizu

joaquim.loizu@ipp.mpg.de

Stuart Hudson, Amitava Bhattacharjee, Sam Lazerson, Per Helander

3D MHD brings together tokamaks and stellarators

Stellarator three-dimensional topology

Tokamak non-axisymmetric designs

(magnetic ripple, resonant magnetic perturbations,...)

Tokamak MHD helical modes and bifurcations

(saturated internal kink, sawteeth)

Computational 3D MHD is a numerical challenge

- ➤ Ideal MHD with continuously nested flux surfaces predicts the existence of singular current densities forming at rational surfaces in 3D equilibria.
- > These are critical for:
 - ➤ 3D equilibrium (magnetic islands, confinement)
 - ➤ 3D macroscopic stability (kink modes, sawteeth)
- ➤ Computation of 3D ideal MHD equilibria is a numerical challenge.
 - Magnetic differential equations are densely singular (Newcomb 1959)
 - Non-smooth solutions are ubiquitous to 3D MHD (Grad 1967, Parker 1994)

The story I am about to tell you

- ① Origin of singularities in 3D MHD with nested flux surfaces
- Questioning the very existence of 3D ideal MHD equilibria
- 3 Ideal MHD as a limit of Multiregion Relaxed MHD
- 4 Numerical computation of singular current densities
- 5 Practical application: plasma response to a boundary perturbation
- 6 A new class of 3D ideal MHD equilibria with nested surfaces

Ideal MHD predicts singular current densities

$$\mathbf{j} \equiv u\mathbf{B} + \mathbf{j}_{\perp}$$

$$\nabla \cdot \mathbf{j} = 0 \; , \; \nabla \cdot \mathbf{B} = 0$$

$$\mathbf{j} \times \mathbf{B} = \nabla p$$

Magnetic coordinates

$$(\psi, \theta, \phi)$$

$$\Longrightarrow$$

$$\mathbf{B} \cdot \nabla u = -\nabla \cdot \mathbf{j}_{\perp}$$

magnetic

$$\mathbf{j}_{\perp} = (\mathbf{B} \times \nabla p)/B^2$$

$$\sqrt{g} \ \mathbf{B} \cdot \nabla \equiv \iota \partial_{\theta} + \partial_{\phi}$$

$$u = \sum_{m,n} u_{mn} e^{i(m\theta - n\phi)}$$

Equation type

$$xf(x) = h(x)$$

$$x \equiv \mu - n, \ h(x) \sim p'$$

$$\Longrightarrow$$

$$(\boldsymbol{t}m-n)u_{mn} = i(\sqrt{g} \nabla \cdot \mathbf{j}_{\perp})_{mn}$$

$$u_{mn}(x) = h(x)/x + \hat{j}_{mn}\delta(x)$$

Pfirsch-Schlüter current

Dirac δ-current

Existence of 3D ideal MHD equilibria?

- $ightharpoonup \mathbf{j} \equiv u\mathbf{B} + \mathbf{j}_{\perp}$ is not the current, but the current density [A/m²].
- Singularities are allowed as long as the current $J = \int_{\Sigma} \mathbf{j} \cdot \mathbf{d}\sigma$ across any surface is finite (weak formulation of the problem).
- ➤ Problem: Pfirsch-Schlüter current diverges across certain surfaces.
- Conclusion: pressure gradients cannot be supported at resonant rationals and thus pressure appears pathological.

The function p is continuous but its derivative is pathological. We have obtained an equilibrium solution without infinite currents, but at the price of a very pathological pressure distribution.

[H. Grad, 1967]

Existence of 3D ideal MHD equilibria?

- $ightharpoonup \mathbf{j} \equiv u\mathbf{B} + \mathbf{j}_{\perp}$ is not the current, but the current density [A/m²].
- Singularities are allowed as long as the current $J = \int_{\Sigma} \mathbf{j} \cdot \mathbf{d}\sigma$ across any surface is finite (weak formulation of the problem).
- ➤ Problem: Pfirsch-Schlüter current diverges across certain surfaces.
- ➤ Conclusion: pressure gradients cannot be supported at resonant rationals and thus pressure appears pathological.

[...] More precisely, our theorems insure the existence of sharp boundary solutions for tori whose departure from axisymmetry is sufficiently small; they allow for solutions to be constructed with an arbitrary number of pressure jumps.

[Bruno and Laurence, 1996]

Multiregion Relaxed MHD

Taylor's theory

Fewer constraints

Helicity is conserved globally

$$F = W + \frac{\mu}{2} \left(\underbrace{\int_{V} \mathbf{A} \cdot \mathbf{B} \ dV}_{H} - H_{0} \right)$$

Topology: $\mathbf{B} \cdot \mathbf{n}|_{\partial V} = 0$ Given $p, \Delta \psi, H_0$

$$\delta F = 0 \Longrightarrow \nabla \times \mathbf{B} = \mu \mathbf{B}$$

[Taylor, 1974]

MRxMHD

N -> ∞

[Dennis, 2013]

Ideal MHD

More constraints

Helicity is conserved discretely

$$F = W + \frac{\mu}{2} \left(\underbrace{\int_{V} \mathbf{A} \cdot \mathbf{B} \ dV}_{-H_0} - H_0 \right) \quad F = \sum_{l=1}^{N} \left[W_l + \frac{\mu_l}{2} \left(H_l - H_{l0} \right) \right] \quad W = \int_{V} \left(\frac{p}{\gamma - 1} + \frac{B^2}{2} \right) dV$$

Topology: $\mathbf{B} \cdot \mathbf{n} \big|_{\partial V_i} = 0$

Given $p_l, \Delta \psi_l, \Delta \psi_{p,l}, H_{l0}$

$$\delta F = 0 \Longrightarrow \begin{bmatrix} \nabla \times \mathbf{B} = \mu_l \mathbf{B} \\ [[p + B^2/2]] = 0 \end{bmatrix} \delta W = 0 \Longrightarrow \underbrace{\mathbf{j} \times \mathbf{B} = \nabla p}$$

[Dewar, Hole, Hudson, 2006]

Helicity is conserved locally

$$W = \int_{V} \left(\frac{p}{\gamma - 1} + \frac{B^2}{2} \right) dV$$

Topology: $\mathbf{B} \cdot \nabla \psi = 0$ Given $p(\psi), \psi_p(\psi)$

$$\delta W = 0 \implies \mathbf{j} \times \mathbf{B} = \nabla p$$

[Kruskal, Kulsrud, 1958]

Stepped-Pressure Equilibrium Code (SPEC)

An implementation of MRxMHD

 \mathcal{R}_l : $\nabla \times \mathbf{B} = \mu_l \mathbf{B}$

 \mathcal{I}_l : $[[p+B^2/2]]=0$

Given $p_l, \Delta \psi_l, \iota_l^+, \iota_l^-$

l = 1, 2, ...N

Philosophy: build up understanding by steps of increasing complexity

- There are two superimposed singularities in the parallel current
 - \triangleright Start with constant-pressure plasma to isolate the δ -current
- Geometry introduces most of the complexity

Ideal MHD

Hahm-Kulsrud-Taylor available solution (1985)

Rosenbluth-Dagazian-Rutherford available solution (1973)

Island shielding produces a $\delta(x)$ -current

With pressure, island shielding produces a 1/x current

SPEC reproduces the analytical results

We have a guideline for more complex geometries

- ➤ Ideal MHD predicts two types of singular currents at rational surfaces in 3D
 - ➤ We have provided the first numerical proof of their mutual existence
 - ➤ We have developed an analytical linear slab model that
 - (1) describes the formation of islands around resonant rational surfaces
 - (2) retrieves the ideal MHD limit in which magnetic islands are shielded
 - (3) computes the subsequent formation of δ -currents and 1/x-currents
 - Results provide a guideline for the computation of 3D ideal MHD equilibria

More details in [Loizu et al, PoP 2015]

Application to cylindrical geometry

Shielding obtained directly with discontinuous ι

- ➤ It is not very practical to create a sequence to shield an island.
- Notice that the sequence { $ι^{\pm} = 1 \pm X^{\alpha}$, $\Delta \Psi = X^{\beta}$ } implies "infinte shear":

$$\frac{\Delta \iota}{\Delta \Psi} \sim X^{\alpha - \beta} \to \infty$$

- > Suggests direct method: place an ideal interface with $ι = 1 \pm Δι/2$.
- > SPEC produces perfectly converged equilibria!
- Questions to answer:
 - (1) physical meaning of $\Delta\iota$?
 - (2) how to choose $\Delta \iota$?

Plasma ideal response to a boundary perturbation

Revisiting solutions to Newcomb equation

$$\frac{d}{dr}\left(f\frac{d\xi}{dr}\right) - g\xi = 0$$

$$\frac{d}{dr}\left(f\frac{d\xi}{dr}\right) - g\xi = 0 \qquad f = B_z^2(t - t_s)^2 \frac{r^3}{R^2 + r^2 t_s^2}$$

$$g = B_z^2(t - t_s)^2 r \frac{k^2 r^2 + m^2 - 1}{R^2 + r^2 t_s^2} + B_z^2(t_s^2 - t^2) 2t_s^2 \frac{r^3}{(R^2 + r^2 t_s^2)^2}$$

Analytical prediction

$$|\xi_s'| = 2t_s' \frac{\xi_s}{\Delta_t}$$

Minimum "DC" current sheet

$$\Delta \epsilon_{min} \propto \xi_a/a \equiv \epsilon$$

Existence space of nonlinear equilibria

A new class of 3D MHD equilibria with nested surfaces

Conjecture

3D MHD equilibria with nested surfaces and discontinuous transform across rationals are well defined.

Corollaries

- DC current sheets can manifest at resonant surfaces. *
- > Perturbation theory is now well-posed (allowing linear/nonlinear benchmark).
- Technically speaking, there are no resonant rational surfaces.
- The possibility of continuous and smooth pressure profiles is rescued.
- * present in [Rosenbluth, Dagazian and Rutherford 1973] & [Boozer and Pomphrey 2010]